Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(if_min, app'(app'(le, n), m))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(minsort, app'(app'(app, app'(app'(rm, n), x)), y))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(add, app'(f, x)), app'(app'(map, f), xs))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(eq, n), m)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(if_rm, app'(app'(eq, n), m)), n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x))))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(filter2, app'(f, x)), f)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(le, n), m)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(filter2, app'(f, x)), f), x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(add, x)
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(le, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(add, m), app'(app'(rm, n), x))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(app, app'(app'(rm, n), x)), y)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(filter, f)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(add, app'(f, x))
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(min, app'(app'(add, n), x))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(filter2, app'(f, x))
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(filter, f)
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(add, n), app'(app'(app, x), y))
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(rm, n)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(eq, n), app'(min, app'(app'(add, n), x)))
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(minsort, x)
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(add, n), x)
APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(eq, x)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(add, x), app'(app'(filter, f), xs))
APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app, x)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(rm, n)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(add, n), y)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(eq, n)
APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(le, n)
APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(eq, n)
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app, app'(app'(rm, n), x))
APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(if_rm, app'(app'(eq, n), m))
APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 37 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(app, app'(app'(add, n), x)), y) → APP'(app'(app, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(add) = 4   
POL(app) = 0   
POL(app'(x1, x2)) = (4)x_1 + (4)x_2   
POL(APP'(x1, x2)) = (4)x_1   
The value of delta used in the strict ordering is 1024.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(le, app'(s, x)), app'(s, y)) → APP'(app'(le, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(app'(x1, x2)) = (1/4)x_1 + (13/4)x_2   
POL(s) = 1/4   
POL(APP'(x1, x2)) = (15/4)x_2   
POL(le) = 0   
The value of delta used in the strict ordering is 15/64.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, m), x))
APP'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → APP'(min, app'(app'(add, n), x))
The remaining pairs can at least be oriented weakly.

APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
Used ordering: Polynomial interpretation [25,35]:

POL(add) = 0   
POL(true) = 4   
POL(app'(x1, x2)) = 1/2 + (2)x_2   
POL(false) = 5/4   
POL(s) = 4   
POL(if_min) = 15/4   
POL(min) = 3/4   
POL(0) = 1   
POL(APP'(x1, x2)) = (2)x_2   
POL(le) = 5/2   
The value of delta used in the strict ordering is 2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(min, app'(app'(add, n), app'(app'(add, m), x))) → APP'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(eq, app'(s, x)), app'(s, y)) → APP'(app'(eq, x), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(eq) = 0   
POL(app'(x1, x2)) = (1/4)x_1 + (13/4)x_2   
POL(s) = 1/4   
POL(APP'(x1, x2)) = (15/4)x_2   
The value of delta used in the strict ordering is 15/64.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
APP'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → APP'(app'(rm, n), x)
The remaining pairs can at least be oriented weakly.

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
Used ordering: Polynomial interpretation [25,35]:

POL(eq) = 7/2   
POL(add) = 3/4   
POL(rm) = 0   
POL(true) = 3   
POL(app'(x1, x2)) = (1/4)x_1 + (2)x_2   
POL(false) = 2   
POL(s) = 9/4   
POL(if_rm) = 1/4   
POL(0) = 13/4   
POL(APP'(x1, x2)) = (1/2)x_2   
The value of delta used in the strict ordering is 3/128.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(rm, n), app'(app'(add, m), x)) → APP'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(minsort, app'(app'(add, n), x)), y) → APP'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
APP'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → APP'(app'(minsort, x), app'(app'(add, n), y))
APP'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → APP'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(filter, f), app'(app'(add, x), xs)) → APP'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(f, x)
APP'(app'(map, f), app'(app'(add, x), xs)) → APP'(app'(map, f), xs)
The remaining pairs can at least be oriented weakly.

APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)
Used ordering: Polynomial interpretation [25,35]:

POL(eq) = 0   
POL(if_minsort) = 0   
POL(rm) = 0   
POL(true) = 0   
POL(app'(x1, x2)) = 1/4 + (1/4)x_1 + (4)x_2   
POL(s) = 0   
POL(0) = 0   
POL(min) = 0   
POL(APP'(x1, x2)) = (3/4)x_2   
POL(filter) = 0   
POL(minsort) = 0   
POL(add) = 1/4   
POL(app) = 0   
POL(map) = 0   
POL(false) = 0   
POL(if_rm) = 0   
POL(filter2) = 0   
POL(if_min) = 0   
POL(nil) = 0   
POL(le) = 0   
The value of delta used in the strict ordering is 63/256.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP'(app'(app'(app'(filter2, true), f), x), xs) → APP'(app'(filter, f), xs)
APP'(app'(app'(app'(filter2, false), f), x), xs) → APP'(app'(filter, f), xs)

The TRS R consists of the following rules:

app'(app'(eq, 0), 0) → true
app'(app'(eq, 0), app'(s, x)) → false
app'(app'(eq, app'(s, x)), 0) → false
app'(app'(eq, app'(s, x)), app'(s, y)) → app'(app'(eq, x), y)
app'(app'(le, 0), y) → true
app'(app'(le, app'(s, x)), 0) → false
app'(app'(le, app'(s, x)), app'(s, y)) → app'(app'(le, x), y)
app'(app'(app, nil), y) → y
app'(app'(app, app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(app, x), y))
app'(min, app'(app'(add, n), nil)) → n
app'(min, app'(app'(add, n), app'(app'(add, m), x))) → app'(app'(if_min, app'(app'(le, n), m)), app'(app'(add, n), app'(app'(add, m), x)))
app'(app'(if_min, true), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, n), x))
app'(app'(if_min, false), app'(app'(add, n), app'(app'(add, m), x))) → app'(min, app'(app'(add, m), x))
app'(app'(rm, n), nil) → nil
app'(app'(rm, n), app'(app'(add, m), x)) → app'(app'(app'(if_rm, app'(app'(eq, n), m)), n), app'(app'(add, m), x))
app'(app'(app'(if_rm, true), n), app'(app'(add, m), x)) → app'(app'(rm, n), x)
app'(app'(app'(if_rm, false), n), app'(app'(add, m), x)) → app'(app'(add, m), app'(app'(rm, n), x))
app'(app'(minsort, nil), nil) → nil
app'(app'(minsort, app'(app'(add, n), x)), y) → app'(app'(app'(if_minsort, app'(app'(eq, n), app'(min, app'(app'(add, n), x)))), app'(app'(add, n), x)), y)
app'(app'(app'(if_minsort, true), app'(app'(add, n), x)), y) → app'(app'(add, n), app'(app'(minsort, app'(app'(app, app'(app'(rm, n), x)), y)), nil))
app'(app'(app'(if_minsort, false), app'(app'(add, n), x)), y) → app'(app'(minsort, x), app'(app'(add, n), y))
app'(app'(map, f), nil) → nil
app'(app'(map, f), app'(app'(add, x), xs)) → app'(app'(add, app'(f, x)), app'(app'(map, f), xs))
app'(app'(filter, f), nil) → nil
app'(app'(filter, f), app'(app'(add, x), xs)) → app'(app'(app'(app'(filter2, app'(f, x)), f), x), xs)
app'(app'(app'(app'(filter2, true), f), x), xs) → app'(app'(add, x), app'(app'(filter, f), xs))
app'(app'(app'(app'(filter2, false), f), x), xs) → app'(app'(filter, f), xs)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.